Quantization of Vector Bundles on Lagrangian Subvarieties

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Quantization of Vector Bundles

I repeat my definition for quantization of a vector bundle. For the cases of Töplitz and geometric quantization of a compact Kähler manifold, I give a construction for quantizing any smooth vector bundle which depends functorially on a choice of connection on the bundle.

متن کامل

Quantization of Equivariant Vector Bundles

The quantization of vector bundles is defined. Examples are constructed for the well controlled case of equivariant vector bundles over compact coadjoint orbits. (Coadjoint orbits are symplectic spaces with a transitive, semisimple symmetry group.) In preparation for the main result, the quantization of coadjoint orbits is discussed in detail. This subject should not be confused with the quanti...

متن کامل

Deformation Quantization of Hermitian Vector Bundles

Motivated by deformation quantization, we consider in this paper -algebras A over rings C = R(i), where R is an ordered ring and i = −1, and study the deformation theory of projective modules over these algebras carrying the additional structure of a (positive) A-valued inner product. For A = C(M), M a manifold, these modules can be identified with Hermitian vector bundles E overM . We show tha...

متن کامل

Lagrangian subvarieties of abelian fourfolds

Let (W, ω) be a smooth projective algebraic variety of dimension 2n over C together with a holomorphic (2, 0)-form of maximal rank 2n. A subvariety X ⊂ W is called weakly lagrangian if dim X ≤ n and if the restriction of ω to X is trivial (notice that X can be singular). An n-dimensional subvariety X ⊂ W with this property is called lagrangian. For example, any curve C contained in a K3 or abel...

متن کامل

Notes on Vector Bundles

−→ V, (v1, v2) −→ v1+v2, are smooth. Note that we can add v1, v2∈V only if they lie in the same fiber over M , i.e. π(v1)=π(v2) ⇐⇒ (v1, v2) ∈ V ×M V. The space V ×M V is a smooth submanifold of V ×V , as follows immediately from the Implicit Function Theorem or can be seen directly. The local triviality condition means that for every point m∈M there exist a neighborhood U of m in M and a diffeo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnx230